充电器芯片阿里巴巴店铺 开关电源芯片关注骊微 电机驱动芯片收藏骊微 欢迎进入电源芯片/驱动芯片、MOS、IGBT、二三极管、桥堆等电子元器件代理商--骊微电子官网
高级搜索

搜索一

搜索二

充电管理IC方案
当前位置: 电源ic > 新闻中心 > 常见问答old > LED恒流驱动大功率电源设计方案?

LED恒流驱动大功率电源设计方案?

字号:T|T
文章出处:骊微电子责任编辑:admin人气:-发表时间:2015-09-22 14:29
      大功率电源的设计已经成为了LED恒流驱动电源中非常重要的组成部分之一,在工业、照明灯领域的应用范围非常广泛。本文在这里将会为大家分享一种以LED恒流驱动为设计基础的大功率电源的设计方案,以便于工程师在新产品研发时进行参考和学习。
 
      在本方案中,该大功率电源在结构方面主要采用的是反激式隔离开关电源,在系统接通后可以实现350mA的恒流输出,可以驱动12个1w的大功率LED。
 
      在了解了整个LED恒流驱动电路的设计电路图后,接下来我们要为大家分享的是之一电路的工作原理及工作过程。当110—265V的交流电输入这一恒流驱动电路之后,电流将会经过保险丝F1和EMI滤波电路之后整流,其中的EMI电路由一个共模电感T1和两个X2型电容CX1和CX2组成。在输入端还有一个负温度效应的热敏电阻RT1,这是为了防止浪涌电流对后面的器件造成损害。当电源还没有通电时,热敏电阻的阻值很大,因此可以起到限制浪涌电流的作用。当电路恢复正常的工作状态之后,热敏电阻由于有电流通过而发热,导致电阻会变得很小,所以正常工作后,热敏电阻的功率损耗是很小的。在开关接通后,电流将会经过整流桥滤波之后再经过CBB电容C1滤波,然后经过功率因数校正电路,使功率因数提高到0.85-0.90之间。之后电流经过初级绕组、开关管Q1和采样电阻R6和R7到地,这一整个过程就是电源输入端的主回路。
 
     在这一大功率的LED恒流驱动设计中,我们是通过什么样的方法来实现恒流驱动控制的呢?其实非常简单,在这一设计方案中可以通过控制主回路的电流实现恒流控制,具体的方法是通过采样电阻将输入端的电流信号转化为电压信号,反馈到PWM控制芯片的3号引脚调整芯片输出脉冲的占空比来实现。在主回路上,由于开关管在断开的瞬间初级绕组的能量无法瞬间释放而产生很大的尖峰电压,如果这部分电压无法释放将会造成开关管“打火”而烧毁,所以在初级绕组的两端还要设计尖峰电压吸收回路,这部分电路由肖特基二极管D4、电阻R4、R5和高压瓷片电容C3组成。当开关管断开的时候,二极管D4导通,初级绕组和这部分电路形成了回路,从而实现尖峰电压的吸收。
 
     该种大功率电源的设计,之所以能够快速有效的实现恒流控制的核心技术,是采用了PWM控制芯片082532。电阻R1和R2给芯片提供启动电流。为了提高效率,该电源有一个辅助绕组给芯片供电,辅助绕组的输出经过整流二极管D5和滤波电容C4之后形成大约20V的电压给芯片供电。与此同时,这个绕组在整个电路系统中还起到另外一个关键的作用,那就是电压采样。出电压经过R9和R10分压之后反馈到芯片的4号引脚。为了使芯片能够稳定的稳压,在芯片的5号引脚和地之间串联一个电容C8作为环路补偿。芯片的2号端口是脉冲的输出端,输出端与场效应管Q1的栅极连接以控制开关管的导通与截止。输入电压经过变压器变压之后,经过超快速恢复二极管D6整流之后由电解电容C5滤波再输出。在二极管D6上,并上电阻R11,和电容C7,是由于二极管在电路工作时处在高频的开关状态,加上这部分电路可以避免二极管产生振荡。
 
产品中心 关于骊微 联系我们